超市
超市
前言:肚子好饿哦,我们去超商买点东西吧,好啊,可是我们没钱了欸,你回去拿点了啊,不行的,我爸妈不给我,这里有面包你们要吃吗?好啊,我家还蛮大的,你们可以来我家van
(误
题目来源
这道题来自于acwing
,下面是链接
同时,这道题也可以在算法竞赛进阶指南,POJ
,和kuangbin
专题里面找到
原题题面
超市里有 N
件商品,每件商品都有利润 pi
和过期时间 di
,每天只能卖一件商品,过期商品不能再卖。
求合理安排每天卖的商品的情况下,可以得到的最大收益是多少。
输入格式
输入包含多组测试用例。
每组测试用例,以输入整数N
开始,接下来输入 N
对 pi
和 di
,分别代表第i
件商品的利润和过期时间。
在输入中,数据之间可以自由穿插任意个空格或空行,输入至文件结尾时终止输入,保证数据正确。
输出格式
对于每组产品,输出一个该组的最大收益值。
每个结果占一行。
数据范围
0≤N
≤10000
1≤pi
, di
≤10000
最多有 14 组测试样例
输入样例:
4 50 2 10 1 20 2 30 1
7 20 1 2 1 10 3 100 2 8 2
5 20 50 10
输出样例:
80
185
题目解释
朴素算法
我们已知这个超市很独特,每天就卖一件物品哈(早晚得倒闭),现在我们想知道最高的收益是多少,那这思路就好说力,
我们按照题目要求输入输出数据来进行排序,对于每一个商品我们按照这种排法,价格相同的天数高优先排,价格不同的价格优先排,然后对于每一个商品,我们从它的可以被卖掉的最后一天开始算,如果它的最后一天没有其它商品卖,那么就卖它,反之,我们就看上一天有没有商品卖,对于每一个商品依次进行,可以卖掉的商品的价格累加就是我们的最大的收益
这种思路很正确,可以过一些样例(在洛谷里面有道类似的题就用上面的方法过的,因为数据较少可以跑过),但是这道题用上面的方法就不太行了,我们对于每一个物品,都要从它可以卖掉的最后一天找起,这样就会很麻烦,会有很多不需要的计算量,这个时候,我们就要对我们的朴素算法进行优化
优化 并查集
我们把所有的天数分成两类,有商品可以卖的天和没有商品卖的天,一开始,我们所有的天都是互不相关的,现在我们从第一个商品开始,把它加到它的最后一天,这样一来,就有一个天数是有商品可以卖的,依次往复,对于每一个商品,我们查询它的可以卖的第一个天数,直接累加就可以了,因为并查集里面的路径压缩近乎O(1),所以不用担心查询操作的时间,这样一来就节省了很多时间力
代码解释
首先,我们设置基础变量
#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
typedef pair<int, int> PII;
vector<PII> res;
int p[N];
路径压缩
int find(int x) {
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
主函数
int main()
{
int n;
while(cin >> n)
{
res.clear();
int ans = 0, maxx = 0;
//添加到pair里面
for(int i = 0;i < n;i++)
{
int a, b;
cin >> a >> b;
//pair默认从小到大排序
res.push_back({-a, b});
//找到最大天数
maxx = max(maxx, b);
}
//初始化
for(int i = 0;i <= maxx;i++) p[i] = i;
//排序(朴素算法里面的,这里直接用stl实现)
sort(res.begin(), res.end());
//每个数据进行查询
for(auto re: res)
{
int l = -re.first, r = re.second;
int t = find(r);
//判断还有没有天数可以用
if(p[t] > 0)
{
ans += l;
//变成上一天
p[t] = t - 1;
}
}
//输出累加和
cout << ans << endl;
}
return 0;
}
ac
代码
#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
typedef pair<int, int> PII;
vector<PII> res;
int p[N];
int find(int x)
{
if(p[x]!=x) p[x] = find(p[x]);
return p[x];
}
int main()
{
int n;
while(cin >> n)
{
res.clear();
int ans = 0, maxx = 0;
for(int i = 0;i < n;i++)
{
int a, b;
cin >> a >> b;
res.push_back({-a, b});
maxx = max(maxx, b);
}
for(int i = 0;i <= maxx;i++) p[i] = i;
sort(res.begin(), res.end());
for(auto re: res)
{
int l = -re.first, r = re.second;
int t = find(r);
if(p[t] > 0)
{
ans += l;
p[t] = t - 1;
}
}
cout << ans << endl;
}
return 0;
}